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Abstract-A solution is obtained for the unsteady-state one-dimensional problem of condensed fuel surface 
combustion in an oxidant atmosphere. As with the majority of diffusion combustion problems, the chemical 
reaction rate in the flame zone is supposed to be large compared with the rate of diffusion. An analytical 
solution is obtained for the system of nonstationary one-dimensional equations describing the flow of a heat 
conducting, reacting mixture of mutually diffusing gases. A comparison is made between the computed results 

and experimental data on the diffusion combustion of gasoline in fine tubes. 

1. INTRODUCTlON 

IT HAS BEEN established experimentally [l-5] that 
during combustion of the surface of liquid and solid 
fuels in an oxidant atmosphere, the chemical reaction is 
localized within a narrow zone termed the diffusion 
flame surface. In solving the problems of diffusion 
combustion [6-91 it is supposed that in the flame zone 
the chemical reaction rate is large as compared with the 
rate of diffusion and the reactants are unable to 
penetrate deep through the flame not entering into 
reaction. The main limiting factor in the determination 
of the rate of material combustion is not the kinetics of 
chemical reactions, but rather the rates of combustible 
evaporation and supply of reactants into the reaction 
zone by diffusion. Therefore, in the study of diffusion 
combustion of great importance is the insight into the 
processes of interphase heat and mass transfer. 

The majority of works dealing with such problems 
consider steady diffusion flames which are stabilized in 
an oxidant flow [S-9] or which, in the absence of flow, 
develop above the surface of a burning spherical 
particle [lo]. However, on ignition of unmixed systems 
the diffusion flame surface originates near the phase 
interface and recedes from it as time proceeds. This 
behaviour of the flame surface can be illustrated by 
solving the unsteady one-dimensional problem ofplane 
fuel surface diffusion combustion in an oxidant 
atmosphere in the absence of external body forces 
(Fig. 1). 

A problem will be considered on the development of 
combustion in unmixed systems when, prior to ignition, 
the density of combustible vapours above the 
condensed phase surface is close to zero and the flame 
can originate only close to the surface. Problems, in 
which a combustible had an ample time to evaporate 
and by the moment of ignition the vapour density 
above the surface has become high, are excluded from 
the analysis, since at the initial stage of flame 
propagation these problems are close in physical 
nature to those of homogeneous combustion. 

2. MATHEMATICAL STATEMENT 

OF THE PROBLEM 

A system of equations for a one-dimensional 
unsteady flow of a gaseous mixture with variable 
composition and chemical reactions reads : 

au, aq a ax 
pat+~vax=axpDZ+wi; i= l,...,N (3) 

+&,I, ; h.3 (4) 
i=l ‘ax 

,ZPR&i 
i=l mi’ 

T 

T f Tel _ _ _ 

_-_- _- 

FIG. 1. Temperature distribution in a gas and condensed phase 
in diffusion combustion. 
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NOMENCLATURE 

D 

$i 

h; 

h. 
mi 

P 
R 
T 
V 

yi 

mean binary diffusion coefficient 
specific heat at constant pressure for ith 
species 
specific enthalpy of ith species formation 
(chemical energy of ith species) 
specific heat of phase change 
molar mass of ith species 
pressure 
universal gas constant 
gas temperature 
gas velocity 
mass concentration of ith species. 

Greek symbols 
1 mean thermal conductivity 

P dynamic viscosity 

Li = 413 /l 
v;, v; stoichiometric coefficients of ith species 

before and after reaction 

P gas density 

wi mass rate of ith species formation as a 
result of chemical reaction. 

Subscripts 
i = 1 refers to oxidant 
i = N refers to fuel 
i = 2,... , N - 1 refers to reaction products and 

inert components. 

where where 

H=e,T+;+; Y,h;; 
i=l 

tp = f y,c,,; hi = cpiT+h;. 
i=l 

As a follow-up to ref. [lo], the gas velocities caused 
by combustion are assumed to be insignificant so that 
the effects due to friction and dynamic pressure can be 
neglected. Then, equation (2) can be replaced by the 
isobaricity condition (p = const.) usually used in the 
solution of diffusion combustion problems [S-lo, 12, 
131. 

AH=‘=’ 
mN(vh - v:) 

DC = c^ r, 
ml(v; -v;) AC, - ml(v; - v’J 

Multiply equation (3) by hp, sum over i and subtract 
from equation (4). Add equation (4) to equation (3), 
which has been multiplied by cC~T. Assuming the Lewis 
number (Le = I/pDc^,) to be close to unity, one obtains 
a system of equations equivalent to the original one : 

fj micpi(v; -vi) 

AC =i=’ 
P ml(v; -vi) 

In the solution of the unsteady problem the fuel 

cannot be assumed as uniformly preheated. The energy 
equation in a fuel layer in a coordinate system moving 
with the phase interface (Fig. 1) has the form z+g=o 

p = const. (7) 

(8) 

apc^,T , apvv= anaeT N P 
at ’ ax ax fp ax - izl ai@. (9) 

Taking into account the fact that for the proceeding 
chemical reaction the relation wi = wm,(vj’- vi) [9, lo] 
is valid, the above system yields the following equations 
to determine the pair functions pi : 

ap apv atfax= 

Wi a&i x+ ax 
a A a/A. i = 2, 

ax fp ax ’ > ..,N,T,C, (11) 

&= x & 
m,(v; -vi) - ml(v; -vi) ’ 

i = 2,...,N 

/+ C^pT Y, 
rnN(vh -vi) AH - ml(v’; - vi) 

aT )t+vfg= L E 0 PC f ax2 ’ 
(12) 

where v,(t) is the velocity of fuel motion relative to the 
phase interface. 

The boundary conditions for system (lo)-(12) are 
written in the form : 

(1) at the outer boundary in the gas (x --f + co) 

T = T,, Y, = Yl,, Y,, = 0; (13) 

(2) at the outer boundary in the liquid 

T= To; (14) 

(3) at the phase interface (x = 0) [12, 131 

(P&V = --Prvr3 (15) 

(~&.&-_(~4v~ = 0, i = l,...,N-1; 
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(PMY,w-l)-(pD)wZ = 0; (16) 

Boundary conditions (13)-(17) are supplemented 
with the condition of equilibrium evaporation [7, 141 
and with the assumption of the diffusion mode of 
combustion, i.e. an oxidant is absent (i = 1) under the 
flame surface and a fuel is absent (i = N) above the 
flame surface. 

3. SOLUTION OF THE SYSTEM 

OF EQUATIONS 

The system of equations (11) admits the first integrals 

Bl = (Die - Piw)B+ Biw> i = 2,. . ‘3 NT 7’3 C, (18) 

where the function /I is also the solution of equation (11) 
subject to the boundary conditions 

p=Oatx=O and fi=lwhenx++co. 

To obtain the solution of system (lo), (1 l), introduce 

a new independent similarity variable 5 = xl& and 
dependent variables 

V(S) = P/P,; PV = PeCfeYJa ; P = B(r). (19 

The system of equations (10) and (11) takes the form 

-rp’<+f’ = 0 (20) 

- hPB’+fB = & bp” + 8’P’), (21) 
e 

where the prime means differentiation with respect to 
[(f’ = df/d& Pr = pc,Jl = const. is the Prandtl 
number. 

It will be assumed, as is usually done when 
homobaric processes are considered [lo, 11, 121, that 
the condition pp = const. is fulfilled throughout the 
region. From this condition it follows that 

p’V+(P’p=O; p=L&. (22) 

The substitution of relations (22) into relation (21) 
yields 

a2 p” p’@ = B’(f-_&$ ( 2) (23) 
cp cp 

where a2 = pJp, Pr. 
Similarly, by introducing new variables for the 

condensed phase (2 > 0) 

< = 27/J%; $(<) = T/T, (24) 

and taking into account boundary condition (15) 

(P&v = - Pf Uf = P,f(WJ2t> 

one may reduce the energy equation (11) to the form 

b2@‘(5) + @(5) (5 + k) = 0 (25) 

where 

k&f(O); b&1,. 
Pf PfCf 

The resulting system of three equations (20), (23) and 
(25) contains four unknown functions : f(t), (p(t), /3(t), 
and $(t). To bring about closure of the system, it is 
necessary to use one other equation, i.e. equation (2), 
which in the present case has degenerated into the 
homobaricity condition (7), whence, with the aid of the 
state equation for a multi-component mixture 

me = p&l ; 
I 

the following relations will be obtained 

f$ = V(5) B(5) 2 (v:l-v\1;)(8ie-BiW) 
e [ i=2 

N 

+ J2 PiW(4 -4 
1 

B(5) he - BTW) + BTW 
~(5) (pee _ pm) + pew (26a) 

for 5 < t.+, i.e. below the flame surface, 

5 (v;-v'i)~i(~)-PN(8 
i=2 

for 5 > t*, i.e. above the flame surface, where 

ai = 
m,(v:‘- vi) 

q(v’; -vi) 

The first integrals of the system of equations in the 
gas (18) and boundary conditions (15)-(17) yield the 
relations to determine the concentrations and heat 
fluxes at the phase interface : 

Pie 

i = 2,...,N-1 (27) 

/J 
NW 

= /he + (CP,f(o)l/C(P~)wB’(o)l} 

1+ ~CP,f(O)llC(P~)wP'(0)1~ ' 
(28) 

-1, W’(O) = Le ~pw(~~)wB'(0) 
&e-&W 

B 

CW 

pef (‘W, 
Le Sw(~D)wB’(0) 1 

(29) 

By introducing the dimensionless mass transfer 
parameter B, = [p,f(O)]/[(pD),~(O)] and using the 
definition of Bi, the following relations can be obtained 
from relations (27)-(29) : 

xw = L-@iKe 
l+Bn ; 

i=2,...,N-1; (30) 

r,W = 
Bn-@,Y1, 

l+Bn ; 
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- & T,vWJ) = W)wB’(O) 

x C&K-Tw)+ Y,,Q,,-&&,I, (31) 

where 

Qpw = T,Ac,+(&AH; Le = 1. 

Determine the partial pressure of combustible 
vapours at the phase interface by the formula 

PNW = Y,,P,Z, where (32) 

The mass transfer parameter Bn will be determined, 
similarly to works [S, 9, 141, by substituting relations 
(30) into equation (32) and making use of the 
Clapeyron-Clausius modified equilibrium evapor- 
ation condition [7, 141: 

N-l 

i=2 

At 5 = 0, equations (26) give an additional boundary 
condition 

(34) 

Equations (20), (23), (25), (26) with their boundary 
conditions and relations (31), (33), (34) constitute a 
closed system of three differential and four algebraic 
equations for the determination of the unknown 
functionsrp(t),f(&P’(&$(<)andunknownparameters 
Bn, T,, q(O). The values of the quantities p(O) and t/(O) 
in relations (31) are determined from the solution of 
corresponding equations. 

The solution ofequation (25) subject to the boundary 
conditions 

$(O) = g, Jl(co) = 1 
0 

has the form [12] : 

tit<) = 1 + TW - T, erfc C(t + WJ21 , -. 
T, erfc (k/bJ2) 

t35j 

where 

erfc (2) = 1 - L ~= 1 e-” dz. 
s 

Equation (35) yields 

Tw- To J2 
NO) = - -j7-- Hun e _kz,2b2 

0 

x [erfc(k/b,/2)]-‘. (36) 

The LHS of equation (23) contains the total differential 

a2 $‘= 0 B’(S - lrp). 

Note that equation (20) gives 

(f -5d =f’-b’--cp = -cp (38) 

allowing equation (37) to be rewritten in the form 

a2 F’= 0 -$(f -b)‘(f -544 (394 

or 

where 

a’z’ = -zyy’, 

z=;; y= f-&+x (3W 

The integration of equation (39) yields 

D’(T) = CM) exp { - Cf (5)- 5d012/2a2~ (40) 

i.e. 

p(t) = Q(t) e-02/2a2). 

One obtains dy/dc = --cp from condition (38) and 
integrates it on having substituted into equation (40) 

p=-c y s ,-(~*/24’) @,, (41) 
f(O) 

By determining the constant C from the condition at 
the infinity, obtain one other first integral of system (6)- 

(9) : 

B = erfIf(OYaJ21 -erfKf- 5vYaJ21 
___-- (42) 

1 +erf[f(O)/aJ21 . 

The value of C in relation (41) is determined from the 
formula 

c= J2 
aJa~{l+erf[f(O)/aJ21} 

By substituting solution (42) into relation (26) express 
the function cp as 

cp = g(y). (43) 

Then, from equations (38) and (43) the following 
ordinary differential equation is obtained 

dy 
- = -cl(Y) ; 
d5 

Y(O) = f (Q (44) 

which can be integrated numerically when the initial 
condition f(0) is known. Having thus determined the 
function y(l), one can obtain from relations (42), (43) 
(39a) the functions p(t), cp(<) and f (5) and complete the 
solution of this problem. Thus, in order that the 
problem may be solved in a closed form, it is necessary 
to determine the initial condition f(0) or the mass 
transfer parameter Bu. 

From relations (36) and (42) determine $‘(O) and p’(0) 
and substitute these into boundary condition (31). 
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Taking into account relation (34), one obtains 

1, (Tw-T,) PST, __~ 
(PD), (1 +&J *mNPe 

x [ iiz 1 (L-@iYIe)+BD 1 x exP[qy~-$;)] 
= 1 -erf ICPJPJ CfWWl) 

I+ erf CfW+l 

x II&K-T’)+ Y,eQpw-4,U (45) 

Equations (40) and (34) yield 

p,.(O) = { J2 - e-r2co)~2a* (pD),B,( 1 +. 

+ aJ7t * { 1 + erf [f(O)/aJ2]} 

; ~(~,-Y&Di)+BD p,RT, 
i=2 mi 1 

&mNl 

(46) 

Relations (45), (46) and (33) represent a closed system 
of equations to determine the unknown quantities f(O), 
T, and B,. 

The position of the diffusion flame surface in the case 
of the known solution B(l) is determined from the 
condition that fuel vapours are absent above the 
surface ( YN = 0) and oxidant vapours are absent under 
the flame surface ( Y1 = 0). Then, for the pair function & 
there is the same, as in refs. [7, 8, 143, condition 

MC,) = 0, 

whence, using the first integrals ofequation(l8) and the 
conditions at the phase interface (30), the following 
relation is obtained to determine the coordinates of the 
flame surface 5, : 

DC<*) = yNw Bo - Y,$‘N 
Y.ww+ Y,,@N = 441 + Y&‘N) 

(47) 

Let us consider one of the possible approximations 
[lo] ; namely, assume that T, = Tke, where Tke is the 
equilibrium boiling temperature at the pressure p.. In 
this case, it is seen from relation (33) that x, - Y,,@, = 0 
for all i = 2,. . , IV- 1, which is equivalent to the 
condition l& = 0 Vi = 1,. . . , N- 1; YNw = 1. Relation 
(45) is simplified and it can be used to determine the 
mass transfer parameter B, 

B, _ r,;le,, ( G.(;- T,J & .~eRTce 
L L (@h mNPe 

x CL - T,) { 1+ erf Cf(W$l) 

1 - erf { CA/P~I CfKWJ21} 

x exp[q($-A&)]. (48) 

The substitution of the above relation into relation (46) 
yields the transcendental equation to determine the 

unknown boundary condition f (0) : 

4n 
zPef(O) = 

p,m,(pD~,CY,,Q,,+c^,,(T,- T,Jl 

~.RT,&,(l+erf$)exp($) 

(L-T,) 
-If 1 - erf WPJ Cf PM&l) 

x exp { - CdIW&/21*~~ (49) 

4. ANALYSIS OF RESULTS 

In the solution ofmany problems of practical interest 
the main concern is not the distribution of parameters 
above the combustible surface, but rather the mass rate 
of the surface burn out. The solution obtained 
completely meets the case. With the known value of 
f(O), determined, for instance, from the solution of 
system (45), (46), (33) or roughly from the solution of 
relation (49), the mass rate offuel burn-out is prescribed 
by the relation 

@hv = Pef(O)Ab. (50) 

Thus, the proposed method for the determination of 
the surface burn-out rate allows one to integrate the 
system of differential equations and to reduce the 
solution of the problem to the solution of algebraic and 
transcendental equations. 

A change in the level of the combustible surface as it 
burns out can be described by the formula obtained by 
carrying out the integration of relation (50) : 

s 

t 
X,(t) = v,(t) dt = 2 f (O),,h. (51) 

0 

Experiments on one-dimensional combustion of 
liquids in fine elongated burners with the diameters 
from 6 to 23 mm were conducted by Blinov and 
Khudyakov [2]. Ignition was initiated near the liquid 
surface and as the time proceeded a change in the liquid 
level in a burner was determined. The analysis of the 
experimental data has shown that a change in Xw can 
be satisfactorily described by the relation 

x, = KP, 

where the exponent n varies (for different tests) within 
the range 0.55-0.75. Thus, formula (51) agrees 
satisfactorily with the experimental data. Experimental 
investigations of the combustion of diesel fuels [2] 
showed that the rate of surface burning uw, equation 
(50), decreases with the lapse of time and, on reaching 
the critical value uSy, combustion terminates, i.e. the 
self-quenching of flame takes place (for diesel fuels 
v$ = 0.41 x lo-’ m s-l). 

The dependence of the combustion rate on the fuel 
surface level Xw can be easily determined from 
formulae (50) and (51): 

VW = 

[ 1 ; f(0) *;. 
w 

(52) 
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Table 1. Diffusion combustion of gasoline 

Parameter T, G Tw y,, 
Dimensionality K K K - 
Numerical value 300 300 356 0.30 

Pf f(O) 
kg mm3 m s-i” 

740 0.19 

0 5 10 15 20 * 105 m 

FIG. 2. Variation in the bum-out rate with liquid surface 
receding downward (solid curve, theoretical calculation ; 

dashed curve, experiment). 

The results of calculation of the main governing 
parameters for the problem of unsteady-state 
combustion of gasoline surface, contacting with air, are 
given in Table 1. 

Figure 2 presents the dependence of the gasoline 
combustion rate on the surface level plotted on the basis 
of formula (52) and the data of Table 1 (solid curve). For 
comparison, the dashed curve gives the results of 
experimental investigations [2]. 

Thus, an exact solution to the similarity problem of 
diffusion combustion ofafuel surface has been obtained 
in the paper. The results of calculations agree well with 
the experimental data. 
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TRANSFERT DE CHALEUR ET DE MASSE PENDANT LA COMBUSTION DE DIFFUSION 
VARIABLE DUNE SURFACE DE COMBUSTIBLE CONDENSEE 

Rbnme-On obtient une solution du probleme variable unidimensionnel de la combustion dans une 
atmosphere oxydante dune surface de combustible condensee. Comme dans la majorite des problemes de 
combustion de diffusion, la vitesse de la reaction chimique est supposbe grande comparde a la vitesse de 
diffusion. Une solution analytique est obtenue pour le systeme d’tquations monodimensionnelles et variables 
qui decrit l’ecoulement d’un melange en reaction de gaz conducteurs de la chaleur et diffusants. On fait une 
comparaisonentre les rtsultats de calcul et les donnbesexp&imentales sur lacombustion de diffusion d’essence 

dans des tubes fins. 
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WARME- UND STOFFUBERTRAGUNG BE1 INSTATIONARER 
DIFFUSIONSVERBRENNUNG AN DER OBERFLACHE EINES FLUSSIGEN 

BRENNSTOFFES 

Zusammenfassung-Es wird eine Losung fib das instationare eindimensionale Problem der Verbrennung an 
der Oberflache eines fliissigen Brennstoffes in einer oxidierenden Atmosphare ermittelt. Wie bei der Mehrzahl 
der Diffusionsverbrennungsprobleme wird die Geschwindigkeit der chemischen Reaktion als grol3 im 
Vergleich zur Diffusionsgeschwindigkeit angenommen. Eine analytische Lbsung fur das System von 
instationlren eindimensionalen Gleichungen, welche die Stromung einer wlrmeleitenden reagierenden 
Mischung aus wechselseitig diffundierenden Gasen beschreiben, wird ermittelt. Augerdem werden die 
Ergebnisse der Berechnung mit experimentellen Daten der Diffusionsverbrennung von Benzin in diinnen 

Rohren verglichen. 

TEIIJIOMACCOOEMEH IIPH HECTAHWOHAPHOM IOPEHHH IIOBEPXHOCTM 
KOH~EHCWPOBAHHOIO TOIIJIMBA B jHI~~Y3HOHHOM PEXHME 

AmrorauIIn-Pemena uecranuonapnar OAHOMepHaS sanaga 0 ropeHmi nosepxHocTa KOHAeHCnpOBaH- 
HOrO roprorero a aTMOC@epe OKBCJIUTeAR. Kax A a 6OJlbUIIfHCTBe 3aAaY AH~~y3AOHHOrO rOpCHR9 

npennonaraercn, YTO B 30He IInaMeHEl CKOpOCTb XaMmecKol pearum BeJniKa no CpaBHCHIlIO co CKO- 

pOCTbI0 AM4J@IyJAA.nOJIy'IeHO aHaJIBTAW?CKOe pelueHIle CllCTeMbI HCCTaIWOHapHbIX OAHOMCpHbIX ypaB- 

HCHMti, OFIklCbIBakOUIRX TWeHBe TCnJIOIIpOBOAHOfi, XAMAWCKH pearnpyromei? CMeCR BSaklMHO 

Aki@$y~A~py~~~~ ra3oB.~p0~0~~~~ncpaBHeHkiepe3ynbTaToB npoBeAeHHbrxpacqeToBc sKcnepuMeH- 

Ta~bHbIMAAaHHbIMIlnOAN~~y3ROHHOMy~OpeHr(H)6eH3AHaBTOHKHXTpy6ax. 


