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Abstract— A solution is obtained for the unsteady-state one-dimensional problem of condensed fuel surface

combustion in an oxidant atmosphere. As with the majority of diffusion combustion problems, the chemical

reaction rate in the flame zone is supposed to be large compared with the rate of diffusion. An analytical

solution is obtained for the system of nonstationary one-dimensional equations describing the flow of a heat

conducting, reacting mixture of mutually diffusing gases. A comparison is made between the computed results
and experimental data on the diffusion combustion of gasoline in fine tubes.

1. INTRODUCTION

IT HAS BEEN established experimentally [1-5] that
during combustion of the surface of liquid and solid
fuels in an oxidant atmosphere, the chemical reaction is
localized within a narrow zone termed the diffusion
flame surface. In solving the problems of diffusion
combustion [6~9] it is supposed that in the flame zone
the chemical reaction rateis large as compared with the
rate of diffusion and the reactants are unable to
penetrate deep through the flame not entering into
reaction. The main limiting factor in the determination
of the rate of material combustion is not the kinetics of
chemical reactions, but rather the rates of combustible
evaporation and supply of reactants into the reaction
zone by diffusion. Therefore, in the study of diffusion
combustion of great importance is the insight into the
processes of interphase heat and mass transfer.

The majority of works dealing with such problems
consider steady diffusion flames which are stabilized in
an oxidant flow [5-9] or which, in the absence of flow,
develop above the surface of a burning spherical
particle [10]. However, on ignition of unmixed systems
the diffusion flame surface originates near the phase
interface and recedes from it as time proceeds. This
behaviour of the flame surface can be illustrated by
solving the unsteady one-dimensional problem of plane
fuel surface diffusion combustion in an oxidant
atmosphere in the absence of external body forces
(Fig. 1).

A problem will be considered on the development of
combustion in unmixed systems when, prior toignition,
the density of combustible vapours above the
condensed phase surface is close to zero and the flame
can originate only close to the surface. Problems, in
which a combustible had an ample time to evaporate
and by the moment of ignition the vapour density
above the surface has become high, are excluded from
the analysis, since at the initial stage of flame
propagation these problems are close in physical
nature to those of homogeneous combustion.
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2. MATHEMATICAL STATEMENT
OF THE PROBLEM

A system of equations for a one-dimensional
unsteady flow of a gaseous mixture with variable
composition and chemical reactions reads:
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Fi1G. 1. Temperature distribution in a gas and condensed phase
in diffusion combustion.



674 N. N. SMIRNOV
NOMENCLATURE
D mean binary diffusion coefficient U dynamic viscosity
Cpi specific heat at constant pressure for ith i =4/3 pu
species vi,vi stoichiometric coefficients of ith species
h; specific enthalpy of ith species formation before and after reaction
(chemical energy of ith species) p gas density
hy specific heat of phase change ; mass rate of ith species formation as a
m; molar mass of ith species result of chemical reaction.
p pressure
R universal gas constant
T gas temperature
v gas velocity Subscripts
Y; mass concentration of ith species. i=1 refers to oxidant
i= N refers to fuel
Greek symbols i=2,...,N—1 refers to reaction products and
A mean thermal conductivity inert components.
where where
o2 N B = Yi — — ) ; i=2,...,N
H=6T+- + Y Yk, m(vi =v)  my(vi—v))
i=1
N By = ¢,T _ Y,
&= Yiew; hi=cuT+h. my(vy—VR)AH  my(vi—))
i=1 N
As a follow-up to ref. [10], the gas velocities caused Z mihi (v, —v{
by combustion are assumed to be insignificant so that AH="1_
the effects due to friction and dynamic pressure can be my(Vy =V
neglected. Then, equation (2) can be replaced by the ¢, Y
isobaricity condition (p = const.) usually used in the fe= my(v{—vy)Ac, - my (v —v))
solution of diffusion combustion problems [5-10, 12, N
13]. z miCpi(V? —vi)
Multiply equation (3) by k{, sum over i and subtract Ac. = =1

from equation (4). Add equation (4) to equation (3),
which has been multiplied by ¢, T. Assuming the Lewis
number (Le = 4/pD¢,) to be close to unity, one obtains
a system of equations equivalent to the original one:

dp dpv
Lo 6
ot Ox ()
p = const. (7
dpY, opvY, & oY
T mluate ®
ope, T opve,T @ 406, T X
9P -2 ¥ ok
ot ax  ox¢, ox ,.; . 0)

Taking into account the fact that for the proceeding
chemical reaction the relation w; = wm;(v; —v}) [9, 10]
is valid, the above system yields the following equations
to determine the pair functions f;:

dp Opv

PPy 10

a T ox (10)
By OpvBi_ 0 A0 5 NTC (1)
ot ax dx ¢, dx

P my(v]—vy)

In the solution of the unsteady problem the fuel
cannot be assumed as uniformly preheated. The energy
equation in a fuel layer in a coordinate system moving
with the phase interface (Fig. 1) has the form

orT + oT AN *T

b =Ly

a o ox pcJe 0x2°
where v,(t) is the velocity of fuel motion relative to the
phase interface.

The boundary conditions for system (10)—(12) are
written in the form:

(12)

(1) at the outer boundary in the gas (x — + o0)

T=T, Y,=Y,, Yy.=0; (13)
(2) at the outer boundary in the liquid
T=T,; (14)
(3) at the phase interface (x = 0) [12, 13]
(podw = —psx, (15)
Y,

(pv)w Yiw ~(pD)w 0, i=1,...,N—1;

ax
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Yy
(Po)w(Yyw =1 —(pD)w ——

= (16)

— A (41) =4 —(pv)why.
kax)fw ka )w

Boundary conditions (13)—(17) are supplemented
with the condition of equilibrium evaporation [7, 14]
and with the assumption of the diffusion mode of
combustion, i.e. an oxidant is absent (i = i) under the
flame surface and a fuel is absent (i = N) above the
flame surface.

(17)

3. SOLUTION OF THE SYSTEM
OF EQUATIONS

The system of equations (11) admits the first integrals
0 _(p N RPN s
Pi = Wie—PiwlP T Piw, 1=
where the function f is also the solution of equation (11
subject to the boundary conditions
f=0atx=0 and f=1whenx— +o0.
To obtain the solution of system (10), (11), introduce

a new independent similarity variable ¢ = x/\/a and
dependent variables

P& = plpe; pv=p Lf)/20]; B=B®. (19)
The system of equations (10) and (11) takes the form
—pl+f =0 209
—Cof +ff = (uB”+B'u), 21

p. Pr

where the prime means differentiation with respect to
E(f' =df/d&), Pr = pcy/A =const. is the Prandtl
number.

It will be assumed, as is usually done when
homobaric processes are considered [10, 11, 12], that
the condition pu = const. is fulfilled throughout the
region. From this condition it follows that

He+e'u=0; pu=plp. 22

The substitution of relations (22) into relation (21)

yields
a2<ﬂ__L> B ~to)
@

23)
@

where a? = u,/p, Pr.
Similarly, by introducing new variables for the
condensed phase (X > 0)

E=3%//2t; (&)=
and taking into account boundary condition (15)

pf(0)//2t,

one may reduce the energy equation (11) to the form

b)Y Q) +k) = 25

T/T, 24

(p)w = ~—peve =

HMT 29:5-B

W

where

k="t

The resulting system of three equations (20), (23) and
(25) contains four unknown functions: f(&), @(&), p(&),
and (). To bring about closure of the system, it is
necessary to use one other equation, i.e. equation (2),
which in the present case has degenerated into the
homobaricity condition (7), whence, with the aid of the
state equation for a multi-component mixture

AR ¢
pe=pRTZ‘

i=1 My

the following relations will be obtained

e = 010 O 3, 07 =) (=)
e i=2

I G ey .

+ 2, Pt ”‘)J B Boe—Bw) + Bew

for £ < £, ie. below the flame surface,

(26a)

PR i=2

€

p N

° =<p(c)[z (= v)B(O— Pa(®)
5 0] Br(®+BuOAH
* X ]Mf) BO)Ae, 260

for £ > &, ie. above the flame surface, where

(V - vl)

o ml(vl —vy)’

The first integrals of the system of equations in the
gas (18) and boundary conditions (15)—(17) yield the
relations to determine the concentrations and heat
fluxes at the phase interface:

_ ﬁie .

b = Tt O DR O}
i=2...,N=-1 (27)
broHIpSOVDWFOT}

v = A o SO DB O]

ﬁ]e BTW

—4Toy'(0) = Le fpw(pD)wﬁ’(O)[ 5

_ ﬁCe - BCW

pof Oy
oy P

— . (29
Le c:,w<pmwﬁ'(0)] )

By introducing the dimensionless mass transfer

parameter By, = [p. f(0)]/[{(pD)wf'(0)] and using the
definition of f;, the following relations can be obtained

from relations (27)-(29):

Y. — DY,
Y;w: ie ifle | l=2,

; ,N—1;
1+Bp

(30)

Bp— Y.

Yiw = ;
W 1+ By
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— 2 Toy'(0) = (pD)w B'(0)
X [fpe(n - TW) + YlerW - BDhL]’ (31)
where

Qpw = TwAc,+OyAH; Le=1.

Determine the partial pressure of combustible
vapours at the phase interface by the formula
v Yw

(32)

Pryw = YNwPem—w, where
my My =1 M
The mass transfer parameter By, will be determined,
similarly to works [8, 9, 14], by substituting relations
(30) into equation (32) and making use of the
Clapeyron—Clausius modified equilibrium evapor-
ation condition 7, 14]:

N-1 T {Acmn)/R
%=m%+2m;n&ﬂ%@%

i=2 m; T

homy (1 1 -1
xexp[ R (f T-w)]_l} . (33

At ¢ = 0,equations (26) give an additional boundary
condition
pemy 90Ty [ & my
pR 145, [;2 i (Ye (I)ine)+BD:|- (34)

Equations (20), (23), (25), (26) with their boundary
conditions and relations (31), (33), (34) constitute a
closed system of three differential and four algebraic
equations for the determination of the unknown
functions @(&), f(&), B(E), ¥ (£)and unknown parameters
Bp, Ty, ¢(0). The values of the quantities §'(0) and (0}
in relations (31) are determined from the solution of
corresponding equations.

The solution of equation (25) subject to the boundary
conditions

T
YO ==, Yl(eo) =1
0

has the form [12]:
Ty—T, erfc[(§+k)/by/2]

Ve =1+—F alokby2) )
where
erfc(z)=1— 2 jz e % dz.
Vo
Equation (35) yields
wm=—m£%i%fww
x [erfc(k/b/2)17 1. (36)

The LHS of equation (23) contains the total differential

ﬁ(ﬁ>=ﬂ1f—é¢)

- @7
®
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Note that equation (20) gives
(f—Coy=f—Co'~p=—9

allowing equation (37) to be rewritten in the form

(38)

wC%)=-—%«f—c¢ﬂf~f¢) (399)
or
a7 = —zyy,
where
:=F yort (39b)

The integration of equation (39) yields
B &) = Co()exp {—[f(§)—L0(8)1*/2a*} (40)

ie.

B(&) = Co(&) e 02,

One obtains dy/dé = —¢ from condition (38) and
integrates it on having substituted into equation (40)
y
B = —cf e 0N gy, @1
£(0)

By determining the constant C from the condition at
theinfinity, obtain one other first integral of system (6)—

©):

_ erf[f (0)/ay/2]—erf[(f—¢p)/a /2] .

4 1+erf[ £(0)/ay/2]

(42)

The value of Cin relation (41) is determined from the
formula

c- v2
a/n- {1 +erf [ f(0)/a/2]}

By substituting solution (42) into relation (26) express
the function ¢ as

¢ = g(y). (43)
Then, from equations (38) and (43) the following
ordinary differential equation is obtained

dy

i 9();
which can be integrated numerically when the initial
condition f(0) is known. Having thus determined the
function y(¢), one can obtain from relations (42), (43),
(39a) the functions (&), (&) and f(£) and complete the
solution of this problem. Thus, in order that the
problem may be solved in a closed form, it is necessary
to determine the initial condition f(0) or the mass
transfer parameter By,

From relations (36) and (42) determine ' (0) and §(0)

and substitute these into boundary condition (31).

y(0) = £(0), (44)
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Taking into account relation (34), one obtains

A (Tw—Ty) PRTy

(pD)y (14+Bp) myp,
N oy
X Z _'(Yie'—q)iYIE)+BD
i=2 M;

O p1
oo 3G liw)]

_ 1—erf {[p./p 1 [£(0)/b/2]}
1+erf [f(0)/by/2]

X [épe(n - TW) + YlerW - BDhL]'
Equations (40) and (34) yield
pef(0) = {\/2+ &7 2 (D) Br(1+ Bp)pemy}

- {a\/n {1 +erf [f(0)/ay/2]}

45)

N
x [}: 2 (Yo~ n,cl>i)+BD]p,RTw}. (46)

Relations (45),(46) and (33) represent a closed system
of equations to determine the unknown quantities f(0),
Tw and Bp,.

The position of the diffusion flame surface in the case
of the known solution f(¢) is determined from the
condition that fuel vapours are absent above the
surface (Y, = 0) and oxidant vapours are absent under
the flame surface (Y; = 0). Then, for the pair function i
there is the same, as in refs. [7, 8, 14], condition

ﬂN(é*) = 0,

whence, using the first integrals of equation(18) and the
conditions at the phase interface (30), the following
relation is obtained to determine the coordinates of the
flame surface £, :

Yyw Bp—Y, 0y
B = = .
Yyw+ Y@y Bp(l+Y, 0y

@47

Let us consider one of the possible approximations
[10]; namely, assume that T, = T,,, where T, is the
equilibrium boiling temperature at the pressure p,.. In
this case, itisseen fromrelation(33) that ¥,,— ¥, @, = 0
for all i =2,...,N—1, which is equivalent to the
condition Y,y = 0Vi = 1,...,N—1; Yy = 1.Relation
(45) 1s simplified and it can be used to determine the
mass transfer parameter By,

B.. = YlerW epe(n—ne) _ )"f _peRTl'(e
b hL hL (PD)w myp.
» (Tee — To) {1 +erf [£(0)/ay/2]}
1—etf {[po/pe] L/ (0)/by/2]}
30 (1 :
x exp[ 5 <a—2 — pf:_;bi):l (48)

The substitution of the above relation into relation (46)
yields the transcendental equation to determine the
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unknown boundary condition f(0):
a\/n _ pemN(pD)W[YlerW"'cApe(Te—Tke)]
N OWNEED
P RT | 1+ erfa\/—2 exp Y
"1—erf {[p./pc] [f(O)/by/2]}
x exp { —[p.f(0)/psb/21%}. (49)

4. ANALYSIS OF RESULTS

In thesolution of many problems of practical interest
the main concern is not the distribution of parameters
above the combustible surface, but rather the mass rate
of the surface burn out. The solution obtained
completely meets the case. With the known value of
f(0), determined, for instance, from the solution of
system (45), (46), (33) or roughly from the solution of
relation (49), the mass rate of fuel burn-out is prescribed
by the relation

(P)w = pS(O)//2t. (50)

Thus, the proposed method for the determination of
the surface burn-out rate allows one to integrate the
system of differential equations and to reduce the
solution of the problem to the solution of algebraic and
transcendental equations.

A change in the level of the combustible surface as it
burns out can be described by the formula obtained by
carrying out the integration of relation (50):

t
Xw(t) = f velt)dt = ’;—:f(ovi. (51)

Experiments on one-dimensional combustion of
liquids in fine elongated burners with the diameters
from 6 to 23 mm were conducted by Blinov and
Khudyakov [2]. Ignition was initiated near the liquid
surface and as the time proceeded a change in the liquid
level in a burner was determined. The analysis of the
experimental data has shown that a change in X, can
be satisfactorily described by the relation

Xy = K",

where the exponent n varies (for different tests) within
the range 0.55-0.75. Thus, formula (51) agrees
satisfactorily with the experimental data. Experimental
investigations of the combustion of diesel fuels [2]
showed that the rate of surface burning vy, equation
(50), decreases with the lapse of time and, on reaching
the critical value v}, combustion terminates, i.c. the
self-quenching of flame takes place (for diesel fuels
vy =041x10"°ms™ ).

The dependence of the combustion rate on the fuel
surface level Xy can be easily determined from
formulae (50) and (51):

_[2e s L
vy = I:; f (0)] X (52)
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Table 1. Diffusion combustion of gasoline

Parameter T, Ty Tw
Dimensionality K K K
Numerical value 300 300

Yl €

356 030

1)
3 s 12

0.19

Pe
kgm~™
740

pe
kgm™
1.25

YNW

0.89

3

ST
—O— — o

0 5 0 15 0 x-10°m

FIG. 2. Variation in the burn-out rate with liquid surface
receding downward (solid curve, theoretical calculation;
dashed curve, experiment).

The results of calculation of the main governing
parameters for the problem of unsteady-state
combustion of gasoline surface, contacting with air, are
given in Table 1.

Figure 2 presents the dependence of the gasoline
combustion rate on the surface level plotted on the basis
of formula (52) and the data of Table 1 (solid curve). For
comparison, the dashed curve gives the results of
experimental investigations [2].

Thus, an exact solution to the similarity problem of
diffusion combustion of a fuel surface has been obtained
in the paper. The results of calculations agree well with
the experimental data.
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TRANSFERT DE CHALEUR ET DE MASSE PENDANT LA COMBUSTION DE DIFFUSION
VARIABLE D’'UNE SURFACE DE COMBUSTIBLE CONDENSEE

Résumé—On obtient une solution du probléme variable unidimensionnel de la combustion dans une

atmosphére oxydante d’une surface de combustibie condensée. Comme dans la majorité des problémes de

combustion de diffusion, la vitesse de la réaction chimique est supposée grande comparée a la vitesse de

diffusion. Une solution analytique est obtenue pour le systéme d’équations monodimensionnelles et variables

qui décrit 'écoulement d’un mélange en réaction de gaz conducteurs de la chaleur et diffusants. On fait une

comparaison entre les résultats de calcul et les données expérimentales sur la combustion de diffusion d’essence
dans des tubes fins.



Unsteady-state diffusion combustion

WARME- UND STOFFUBERTRAGUNG BEI INSTATIONARER
DIFFUSIONSVERBRENNUNG AN DER OBERFLACHE EINES FLUSSIGEN
BRENNSTOFFES

Zusammenfassung— Es wird eine Losung fiir das instationire eindimensionale Problem der Verbrennung an
der Oberfliche eines fliissigen Brennstoffes in einer oxidierenden Atmosphire ermittelt. Wie bei der Mehrzahl
der Diffusionsverbrennungsprobleme wird die Geschwindigkeit der chemischen Reaktion als groB im
Vergleich zur Diffusionsgeschwindigkeit angenommen. Eine analytische Losung fir das System von
instationdren eindimensionalen Gleichungen, welche die Stromung einer wirmeleitenden reagierenden
Mischung aus wechselseitig diffundierenden Gasen beschreiben, wird ermittelt. AuBlerdem werden die
Ergebnisse der Berechnung mit experimentellen Daten der Diffusionsverbrennung von Benzin in diinnen
Rohren verglichen.

TEINNJIOMACCOOBMEH ITPH HECTALIMOHAPHOM I'OPEHHUHM [TOBEPXHOCTH
KOHAEHCHPOBAHHOI'O TOIIJIUBA B JH®®Y3MOHHOM PEXXHUME

Annorauns—Peruena HecTanMOHapHas OJHOMEpPHas 3alaya O I'OPEHHHM MOBEPXHOCTH KOHACHCHPOBAaH-

Horo roptoyero B atMoctepe okuciurens. Kak u B GonbumHcTBe 3amay auddysnonsoro ropenns

OpeanosjaraeTcs, 4To B 30He MIAMEHH CKOPOCTb XUMHYECKOH peakLMM BejiMKa MO CPABHEHHIO CO CKO-

poctbio auddysum. [ToslyueHo aHAINTHYECKOE PElICHHE CUCTEMBI HECTALMOHAPHBIX OJHOMEPHBIX ypaB-

HEHUM, OINMHUCBLIBAIOIIMX TeYEeHHE TEIUIOMPOBOOHOM, XUMHYECKM DEArHpyrolel CMeCH B3aUMHO

mmddyaaupyromux ra3os. [IpoBOINTCA CpaBHEHHE Pe3y/IbTATOB NPOBEAEHHBIX PACYETOB ¢ IKCIIEPHMEH-
TaJIbHBIMH JaHHBIMH 10 1AddY3HOHHOMY ropeHHI0 OeH3HHA B TOHKHX Tpybax.
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